Inferring cancer pathways from Retroviral Insertional Mutagenesis Screens

Jeroen de Ridder,*, Anthony Uren, Jaap Kool, Jan Bot, Marcel Reinders, Lodewyk Wessels

1Delft Bioinformatics Lab, Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands.
2Bioinformatics and Statistics, Dept. of Molecular Biology, Division of Molecular Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
*J.deRidder@TUDelft.nl

In this study, 100 splenic tumors - that were induced by retroviral insertional mutagenesis - are expression profiled, resulting in a dataset for which both the initiating events (the viral integration sites) as well as the consequent expression profiles are available.

To capture complex associations that arise due to interaction among insertion target genes, we infer small Boolean logic networks that explicitly incorporate operators to model the potential parallel alternatives ('or-' and 'exclusive-or' gates) as well as the potential cooperation between mutations ('and' gates).

Discover new putative cancer pathways

Use Combinatorial Association Logic to incorporate interactions

Interactions destroy correlation

Common Insertion Sites indicate putative cancer genes

Insertions affect gene expression

Many direct associations are observed.